Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(2): e17189, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38375686

RESUMEN

Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats. We found that these trait axes were more tightly linked to log evapotranspiration (with an average of 6.2% explained variation) and the proportion of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The highest variation in CRPs was explained in forest and temperate shrubland habitats. Yet, the strength and direction of these relationships were strongly habitat-dependent. We conclude that any spatial upscaling of the effects of plant communities on CRPs must consider the relative contribution of different habitat types.


Asunto(s)
Ecosistema , Pradera , Plantas , Clima , Procesos Climáticos , Biodiversidad
2.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743552

RESUMEN

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Asunto(s)
Embolia , Agua Subterránea , Agua/fisiología , Madera/fisiología , Xilema/fisiología , Plantas , Hojas de la Planta/fisiología , Sequías
3.
Sci Rep ; 13(1): 11570, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463904

RESUMEN

Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate.


Asunto(s)
Ecosistema , Micobioma , Animales , Humanos , Filogenia , Bosques , Geografía , Cambio Climático , Insectos
4.
Nat Commun ; 14(1): 712, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759605

RESUMEN

Ecological theory predicts close relationships between macroclimate and functional traits. Yet, global climatic gradients correlate only weakly with the trait composition of local plant communities, suggesting that important factors have been ignored. Here, we investigate the consistency of climate-trait relationships for plant communities in European habitats. Assuming that local factors are better accounted for in more narrowly defined habitats, we assigned > 300,000 vegetation plots to hierarchically classified habitats and modelled the effects of climate on the community-weighted means of four key functional traits using generalized additive models. We found that the predictive power of climate increased from broadly to narrowly defined habitats for specific leaf area and root length, but not for plant height and seed mass. Although macroclimate generally predicted the distribution of all traits, its effects varied, with habitat-specificity increasing toward more narrowly defined habitats. We conclude that macroclimate is an important determinant of terrestrial plant communities, but future predictions of climatic effects must consider how habitats are defined.


Asunto(s)
Ecosistema , Plantas , Europa (Continente) , Semillas
5.
Plants (Basel) ; 11(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36432753

RESUMEN

Urban agriculture is an emerging challenge. Identifying suitable agrosystems that allow for the multiple functions of urban agriculture represents a key issue for the reinforcement of the agricultural matrix in cities, with the aims of counteracting and adapting to climate change and providing economic and social benefits. This study aims to produce a preliminary assessment of the adaptability of Italian native and non-native Vitis vinifera L. cultivars to the stressors of an urban environment. The investigation was carried out on the grapevine collection of the Botanical Garden of Rome ("Vigneto Italia"). A total of 15 grapevine varieties were selected for the evaluation of leaf chlorophyll content, stomatal conductance, and chlorophyll fluorescence under abiotic conditions during the growing season of 2021. Spectral signatures were collected from mature leaves, and several vegetation indices (LWI, MCARI, and WBI) were calculated. Our preliminary results highlighted differences in the behavior of the grapevine cultivars. The native ones showed a medium-high level for leaf chlorophyll content (greater than 350 mol m−2), good photosynthetic efficiency (QY > 0.75), and optimal stomatal behavior under drought stress (200 > gs > 50 mmol H2O m−2 s−1). The data allowed for the classification of the tested genotypes based on their site-specific resistance and resilience to urban environmental conditions. The grapevine proved to be a biological system that is highly sensitive to climate variables, yet highly adaptable to limiting growing factors.

6.
Nat Commun ; 13(1): 4683, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050293

RESUMEN

Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity.


Asunto(s)
Biodiversidad , Tracheophyta , Ecosistema , Plantas
7.
Glob Ecol Biogeogr ; 31(7): 1399-1421, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35915625

RESUMEN

Aim: Understanding the variation in community composition and species abundances (i.e., ß-diversity) is at the heart of community ecology. A common approach to examine ß-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.

8.
Plants (Basel) ; 11(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35684190

RESUMEN

The endemic Boswellia species (Burseraceae) on Socotra Island (Yemen) are of great local significance due to their various local ethnobotanical uses. However, despite the fact that these trees are endangered, little is known about their biology. We tested seed germination rates in controlled experiments (trials of 21 days) for two subsequent years and for nine endemic taxa of Boswellia occurring on Socotra Island. For this, seeds were collected island-wide from a wide range of localities and for several populations per species. We observed differences in germination among Boswellia species, among species and localities and among both years, which indicates that the development of seeds is strongly affected by external ecological factors. Although we noted a large variation in seed germination (relatively high in Boswellia socotrana), and half of the species showed relatively low mean daily germination, our study indicated that all endangered endemic Frankincense Tree taxa of Socotra harbor the potential for in situ conservation through recruitment, given that known impacts can be reduced in local replantation areas (e.g., grazing).

9.
Sci Data ; 9(1): 62, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35232978

RESUMEN

International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees.


Asunto(s)
Endófitos , Hongos , Insectos , Animales , Biodiversidad , Árboles
10.
PhytoKeys ; 189: 61-80, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35136361

RESUMEN

An updated checklist of Mozambique's vascular plants is presented. It was compiled referring to several information sources such as existing literature, relevant online databases and herbaria collections. The checklist includes 7,099 taxa (5,957 species, 605 subspecies, 537 varieties), belonging to 226 families and 1,746 genera. There are 6,804 angiosperms, 257 pteridophytes, and 38 gymnosperms. A total of 6,171 taxa are native to Mozambique, while 602 are introduced and the remaining 326 taxa were considered as uncertain status. The endemism level for Mozambique's flora was assessed at 9.59%, including 278 strict-endemic taxa and 403 near-endemic. 58.2% of taxa are herbaceous, while shrubs and trees account respectively for 26.5% and 9.2% of the taxa. The checklist also includes ferns (3.6%), lianas (1.7%), subshrubs (0.5%) and cycads (0.3%). Fabaceae, Poaceae and Asteraceae are the three most represented families, with 891, 543 and 428 taxa, respectively. The extinction risk of 1,667 taxa is included, with 158 taxa listed as Vulnerable, 119 as Endangered and as 24 Critically Endangered. The geographical distribution, known vernacular names and plants traditional uses are also recorded.

11.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34050023

RESUMEN

Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species' distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders-abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species' introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions-for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.


Asunto(s)
Especies Introducidas , Filogeografía , Plantas/clasificación , Ecosistema , Europa (Continente)
12.
Ecol Evol ; 11(24): 18111-18124, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003661

RESUMEN

Habitat richness, that is, the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and anthropogenic variables. The distribution of habitat types is a key component for understanding broad-scale biodiversity and for developing conservation strategies. We used data on the distribution of European Union (EU) habitats to answer the following questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? (ii) Which of those factors is the most important? (iii) How do interactions among these variables influence habitat richness and which combinations produce the strongest interactions? The distribution maps of 222 terrestrial habitat types as defined by the Natura 2000 network were used to calculate habitat richness for the 10 km × 10 km EU grid map. We then investigated how environmental variables affect habitat richness, using generalized linear models, generalized additive models, and boosted regression trees. The main factors associated with habitat richness were geographic variables, with negative relationships observed for both latitude and longitude, and a positive relationship for terrain ruggedness. Bioclimatic variables played a secondary role, with habitat richness increasing slightly with annual mean temperature and overall annual precipitation. We also found an interaction between anthropogenic variables, with the combination of increased landscape fragmentation and increased population density strongly decreasing habitat richness. This is the first attempt to disentangle spatial patterns of habitat richness at the continental scale, as a key tool for protecting biodiversity. The number of European habitats is related to geography more than climate and human pressure, reflecting a major component of biogeographical patterns similar to the drivers observed at the species level. The interaction between anthropogenic variables highlights the need for coordinated, continental-scale management plans for biodiversity conservation.

13.
Glob Ecol Biogeogr ; 29(2): 281-294, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32063745

RESUMEN

AIM: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION: Global. TIME PERIOD: Recent. MAJOR TAXA STUDIED: Trees. METHODS: We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS: In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS: Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.

14.
Nat Ecol Evol ; 2(12): 1906-1917, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30455437

RESUMEN

Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait-environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.


Asunto(s)
Rasgos de la Historia de Vida , Dispersión de las Plantas , Plantas , Bosques , Pradera
15.
AoB Plants ; 82016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26819258

RESUMEN

High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients triggered by global change. The re-visitation approach adopted herein represents a powerful tool for studying climate-related changes in sensitive high-mountain habitats.

16.
Environ Pollut ; 172: 250-63, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23078996

RESUMEN

Some studies suggest that in Europe the majority of forest growth increment can be accounted for N deposition and very little by elevated CO(2). High ozone (O(3)) concentrations cause reductions in carbon fixation in native plants by offsetting the effects of elevated CO(2) or N deposition. The cause-effect relationships between primary productivity (NPP) of Quercus cerris, Q. ilex and Fagus sylvatica plant species and climate and pollutants (O(3) and N deposition) in Italy have been investigated by application of Generalised Linear/non-Linear regression model (GLZ model). The GLZ model highlighted: i) cumulative O(3) concentration-based indicator (AOT40F) did not significantly affect NPP; ii) a differential action of oxidised and reduced nitrogen depositions to NPP was linked to the geographical location; iii) the species-specific variation of NPP caused by combination of pollutants and climatic variables could be a potentially important drive-factor for the plant species' shift as response to the future climate change.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Nitrógeno/análisis , Ozono/análisis , Árboles/fisiología , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/estadística & datos numéricos , Cambio Climático , Italia , Nitrógeno/toxicidad , Dinámicas no Lineales , Ozono/toxicidad , Árboles/efectos de los fármacos , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...